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Chapter 19 - THE SMEARING EFFECT 

 

 

In analyzing SANS data, smearing of the model function used is necessary before 

performing nonlinear least-squares fits. The smearing procedure involves a convolution 

integral between the resolution function and the scattering cross section for the scattering 

model.  

 

 

1. THE RESOLUTION FUNCTION 

 

Consider a 1D Gaussian resolution function (Barker-Pedersen, 1995):  
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This distribution is normalized to 1. 




1)Q(PdQ xD1x . 

 

In order to show this normalization, make a variable change to 
2

xQX  so that 

xxdQQ2dX   and the normalization integral becomes as follows.  
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The following integral is used: 
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This verifies that the P1D(Qx) distribution is normalized. The Qy distribution is similar. 

 

Consider a 2D Gaussian resolution function:  
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This distribution is also normalized to 1. 
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In order to show this, make a variable change to 2QR  and QdQ2dR  so that the 

normalization integral becomes as follows. 
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2. THE RESOLUTION CORRECTION 

 

The smeared 1D cross section corresponds to radially averaged SANS data and is given 

by the following integral (using polar coordinates): 
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The smeared 2D cross section integral corresponds to 2D SANS data and is given by the 

following expression: 
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Note that (Qx,Qy) are in Cartesian coordinates. In cases where radial averaging of the data 

is not possible, the 
2

Qx  and 
2

Qy  variances are needed. Note that the variance 

2

Qy

2

Qx

2

Q   is never used.   

 



 3 

 
Figure 1: Parametrization in the detector plane. 

 

 

3. ISO-INTENSITY CONTOUR MAPS WITH GRAVITY EFFECT 

 

Gravity effect on the neutron trajectory distorts the iso-intensity contour maps from 

concentric circles to concentric oval shapes. The following parametric equation describes 

an elliptical shape:  
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Here a is the minor (horizontal) axis and a+b is the major (vertical) axis of the elliptical 

shape. If we consider different major axes for the top and bottom parts, an oval shape is 

obtained. 
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The top and bottom parts have been represented using the sign function. The x and y 

coordinates can be expressed as: 
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 )cos()(rx        (11) 

 )sin()(ry  . 

 

 is the azimuthal angle for binning in the detector plane. Combining these equations, one 

obtains the following parametric equation: 

 

 

2

2

2

2

2

b)(a

sin

a

cos

1
)(r







 .     (12) 

 

 

Note that this applies to Q = 0 only.  

 

 

4. NUMERICAL APPLICATION 
 

Consider the following realistic case: 

 

 L1 = 16.14 m       (13) 

 L2 = 13.19 m 

 Å 18  

 13.0
λ

Δλ
  

 2cm/Å 01189.0A   

 

This gives  

 

min = 15.66 Å , max = 20.34 Å .  

 

The following beam spot characteristics are obtained: 

 

 cm 916.2ymin  , cm 919.4ymax   

 cm 852.3y  , cm 863.3y   

 cm 0667.1yyy maxtop   

 cm 9365.0yyy minbot   

 

Here y  is the spot height corresponding to the mean wavelength   and  y  is the 

vertical location of the beam center. Note that for any practical purpose  yy  and the 

difference cm 130.0yy bottop   is so small that the oval shapes are really elliptical.  
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The beam standard deviation in the vertical direction is estimated to be cm 409.0y   

using both the numerical integration over y and the analytical averaging over  (formula 

given above).  
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Figure 2: Iso-intensity contour map when neutrons are under the influence of gravity; i.e., 

at long wavelength ( = 18 Å) and typical wavelength spread ( %13λΔλ  ). Contours 

corresponding to a = 0.5 cm and k = 1, 5, 10, 15 and 20 are shown. The x and y axes are 

in channel numbers (each detector channel corresponds to 0.5 cm).  

 

  

5. SMEARING FOR HARD SPHERES 

 

Consider idealized scattering from hard spheres and compare it to the smeared case. The 

form factor for a hard sphere of radius R = 50 Å is given by the following function: 
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Consider the following high-Q configuration: 

 

 R1 = 2.5 cm       (15) 

 R2 = 0.5 cm 

 x3 = y3 = 0.5 cm 

 L1 = 1.5 m 

 L2 = 1.5 m 

  = 6 Å 

 
λ

Δλ
= 15 %. 

 

The direct beam spatial resolution on the detector plane is: 
 

 x
2 = 1.83 cm2       (16) 

 y
2 = 1.83 cm2. 

 

The variance of the Q resolution is:  

 

 
2

x

52

Qx Q 0037.010*94.8    (in units of Å-2)  (17) 

2

y

52

Qy Q 0037.010*94.8    (in units of Å-2) . 

 

The wavelength spread contribution dominates for this high-Q configuration. The gravity 

contribution is negligible for the 6 Å wavelength.  

 

For this high-Q configuration,  

 

 Qmin
X = Qmin

Y = 0.028 Å-1.     (18) 
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Figure 3: Plot of the form factor for a sphere of radius R = 50 Å before and after smearing 

produced by the high-Q configuration.  
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Figure 4: Variation of the standard deviation of the Q resolution vs Q.  

 

Consider the following low-Q instrument configuration and spheres of radius R = 500 Å.  

 

 R1 = 2.5 cm       (19) 

 R2 = 0.5 cm 

 x3 = y3 = 0.5 cm 

 L1 = 15 m 

 L2 = 15 m 

  = 12 Å 

 
λ

Δλ
= 15 %. 

 

Therefore: 

 

 A = 0.0138 cm/Å2      (20) 

 x
2 = 1.83 cm2 

 y
2 = 1.83 cm2 

 

So that: 
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2

y

72

Qx Q 0037.010*31.2    (in units of Å-2).   

 

The first term is slightly different for Qx and Qy because of the small gravity 

contribution. For this configuration, the geometry part dominates at low-Q, the 

wavelength-spread part contributes at higher Q, and the gravity term is small.  

 

For this low-Q configuration,  

 

 Qmin
X = 0.0014 Å-1,       (22) 

 Qmin
Y = 0.0016 Å-1.  
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Figure 5: Plot of the form factor for a sphere of radius R = 500 Å before and after 

smearing produced by the low-Q configuration. 
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Figure 6: Plot of the standard deviation of the Q resolution for both the low-Q and the 

high-Q configurations. The values of Qmin are also indicated.  

 

 

6. SANS FROM SILICA PARTICLES 

 

SANS data have been taken from a dilute solution of monodisperse silica particles in D2O 

(volume fraction of 0.1 %) and fit to the sphere model. Fit results gave a sphere radius of 

R = 563.51 ± 0.45 Å. SANS data were taken using a low-Q instrument configuration.  
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Figure 7: SANS data from a dilute solution of monodisperse silica particles in D2O along 

with the fit to the sphere model.  
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QUESTIONS 

 

1. What are the two ways of accounting for instrumental resolution? 

2. Is it OK to perform a 1D smearing convolution integral on 2D SANS data?  

3. What is the effect of instrumental smearing on the radius of gyration obtained from a 

Guinier fit? 

4. What are the two ways of correcting for the effect of gravity? 
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ANSWERS 

 

1. Instrumental resolution is included either (1) by smearing of the model used to fit the 

data or (2) by desmearing the data through an iterative process. Method (1) is the most 

reliable and the most used. Method (2) does not work well when sharp peaks appear in 

the data.  

2. It is OK to perform a 1D smearing convolution integral if the 2D SANS data are 

azimuthally symmetric (scattering is isotropic).  

3. Instrumental resolution tends to broaden peaks. The Guinier region is the tail of a peak 

at Q = 0. Broadening implies a lower slope and therefore a lower radius of gyration. The 

smeared radius of gyration is lower than the real value.  

4. Gravity correction can be made (1) through a software method by defining constant-Q 

elliptical bins or (2) through a hardware method using gravity-correcting prisms.  

 


